
WRAPD: Weighted Rotation-aware ADMM for Parameterization and
Deformation

GEORGE E. BROWN, University of Minnesota
RAHUL NARAIN, Indian Institute of Technology Delhi

Fig. 1. Quasi-static simulation of a neo-Hookean centaur with 98K tetrahedra and 26K vertices, subject to pin constraints. Left : Initial and rest shapes. Middle:
Selected frames from the first ten seconds of simulation comparing our algorithm to competitors. Top right : Objective value vs. time. Bottom right : Norm of
position error relative to optimal state vs. time.

Local-global solvers such as ADMM for elastic simulation and geometry
optimization struggle to resolve large rotations such as bending and twisting
modes, and large distortions in the presence of barrier energies. We propose
two improvements to address these challenges. First, we introduce a novel
local-global splitting based on the polar decomposition that separates the
geometric nonlinearity of rotations from the material nonlinearity of the
deformation energy. The resulting ADMM-based algorithm is a combination
of an L-BFGS solve in the global step and proximal updates of element
stretches in the local step. We also introduce a novel method for dynamic
reweighting that is used to adjust element weights at runtime for improved
convergence. With both improved rotation handling and element weighting,
our algorithm is considerably faster than state-of-the-art approaches for
quasi-static simulations. It is also much faster at making early progress in
parameterization problems, making it valuable as an initializer to jump-start
second-order algorithms.

CCS Concepts: • Computing methodologies → Physical simulation.

Additional Key Words and Phrases: quasi-statics, parameterization, geomet-
ric nonlinearity, rotation-aware, reweighting, optimization, ADMM

Authors’ addresses: George E. Brown, University of Minnesota, brow2327@umn.edu;
Rahul Narain, Indian Institute of Technology Delhi, narain@cse.iitd.ac.in.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
0730-0301/2021/8-ART82 $15.00
https://doi.org/10.1145/3450626.3459942

ACM Reference Format:
George E. Brown and Rahul Narain. 2021.WRAPD:Weighted Rotation-aware
ADMM for Parameterization and Deformation. ACM Trans. Graph. 40, 4,
Article 82 (August 2021), 14 pages. https://doi.org/10.1145/3450626.3459942

1 INTRODUCTION
From quasi-static and dynamic simulation of elastic bodies in physics-
based animation to interactive shape manipulation and mesh pa-
rameterization in geometry processing, recent work has converged
on minimization of deformation energies as a central task in com-
puter graphics. The deformation energy model takes many different
forms in different applications, from physically-based hyperelastic
models such as the neo-Hookean model, to geomerically motivated
distortion metrics such as the symmetric Dirichlet energy. These
energies can be highly nonlinear with respect to stretching defor-
mations, but have the key property that they are invariant to rigid
transformations.
Many popular techniques for minimizing such energies use a

local-global approach [Sorkine and Alexa 2007; Bouaziz et al. 2012;
Overby et al. 2017; Liu et al. 2017; Peng et al. 2018; Zhang et al.
2019; Ouyang et al. 2020], in which chosen per-element quantities
are introduced as additional optimization variables. Optimization is
then performed in an alternating fashion, with a local step acting on
the per-element local variables and a global step updating the vertex
positions.We focus onADMM-PD [Overby et al. 2017], a local-global
algorithm that has been shown to be effective for nonlinear energies

ACM Trans. Graph., Vol. 40, No. 4, Article 82. Publication date: August 2021.

https://doi.org/10.1145/3450626.3459942
https://doi.org/10.1145/3450626.3459942

82:2 • Brown and Narain

including those with infinite barrier terms. In contrast to Newton-
type methods that use Hessian information, local-global techniques
such as ADMM-PD have computationally cheap iterations and often
make rapid progress early on. However, beyond the early iterations
such solvers typically suffer from slow convergence. In this work,
we identify and address two major reasons for the slow convergence
of local-global solvers like ADMM-PD.
First, in all previous work, the local variable for each element is

chosen to be the Jacobian of the deformation map, i.e. the deforma-
tion gradient, or a similar quantity that is invariant to translation.
This choice factors out the translation invariance of the deforma-
tion energy from the local step, allowing the algorithm to take large
steps in resolving translations in the global step. However, when
the problem requires large rotations from the initial guess to the op-
timal solution, such approaches converge slowly since the rotation
of each element is updated gradually over multiple global and local
iterations. We argue that to fully exploit the geometrical properties
of deformation energies, the local variables should be chosen to be
invariant to both translations and rotations. In particular, we use
the polar decomposition to decompose the deformation gradient
and extract a rotation-invariant stretch tensor. Using this choice,
our first contribution is an ADMM-based deformation solver that
treats only the per-element stretch tensors as the local variables, and
solves for vertex positions as global variables. Thus, the local step
deals only with the material nonlinearity of the deformation energy
with respect to principal strains in reference space. The task of the
global step is to recover vertex positions in order to best match
the estimated element stretches, accounting only for the geometric
nonlinearity of rotations.

Second, some local-global methods like ADMM-PD and Liu et al.
[2017] require the specification of per-elementweights. Theseweights
have a dramatic impact on convergence and stability, but good
choices of their values depend on the curvature of the objective
at the optimal configuration and are therefore difficult to select in
advance. When weights are too large, the rate of progress is greatly
inhibited, but when too small ADMM-PD can oscillate and fail to
converge to the optimum. As our second contribution, we introduce
a novel strategy for locally updating element weights. Our reweight-
ing method seamlessly updates element weights as the optimization
proceeds, using per-element tangent stiffness matrices to account
for local curvature at the current configuration.
Combining our rotation-awareness and local reweighting con-

tributions leads to our new algorithm called WRAPD. We evaluate
our proposed algorithm on a large variety of examples from geome-
try optimization and parameterization. With reweighting, WRAPD
requires no weight tuning and dynamically adjusts weights in re-
sponse to changing element stiffnesses. With rotation awareness,
WRAPD rapidly minimizes distortion in problems dominated by
rotational geometric nonlinearities. Combined, these features dra-
matically improve the convergence of ADMM-based optimization.
We demonstrate that our method is considerably faster than state-
of-the-art algorithms for solving quasi-static deformation problems.
As a standalone algorithmWRAPD is also competitive with existing
approaches for parameterization. However, even faster convergence
is obtained when WRAPD is used as an initializer for other parame-
terization algorithms. This hybrid approach outperforms existing

techniques for obtaining quick, early solutions to parameterization
problems.

2 RELATED WORK
Recent work in both physics-based animation and geometry pro-
cessing has been converging towards optimization formulations, in
which one seeks a configuration with minimum deformation energy
subject to other influences such as inertia or user constraints.

In the field of geometry optimization, early work focused on sim-
ple energies that do not exhibit material nonlinearity. The ARAP
energy model has been widely used since its introduction to the
community by Sorkine and Alexa [2007]. It is a simple but effec-
tive model for responding to global deformations while seeking to
preserve localized shape. In subsequent work Liu et al. [2008] used
ARAP in their local-global solver to compute local transformations
for triangles during mesh parameterization. Bouaziz et al. [2012]
extended and formalized these ideas in their unified framework for
geometric optimization based on shape constraints.
Much recent work has focused on optimizing nonlinear defor-

mation energies. Kovalsky et al. [2016] proposed the accelerated
quadratic proxy (AQP) algorithm, which uses local quadratic prox-
ies instead of the exact energy Hessian. The cost of their method
scales better with mesh resolution than alternative quasi-Newton
approaches. Rabinovich et al. [2017] also use simpler proxy ener-
gies with an iterative reweighting scheme in their SLIM method.
Claici et al. [2017] account for the invariance of deformation energy
with respect to rigid motions via an isometry-aware preconditioner
for steepest descent. Another technique is composite majorization
(CM) by Shtengel et al. [2017], which solves strictly 2D convex-
concave decomposed problems using a convex majorizer solver.
More recently, Zhu et al. [2018] advocated for their second-order
convergent blended cured quasi-Newton (BCQN) algorithm that
forms quadratic energy proxies by adaptively blending Sobolev gra-
dient and L-BFGS descent. Their method is further improved by a
barrier-aware line-search and improved termination criteria.

In physics-based animation, Martin et al. [2011] pointed out that
backward Euler time integration can be formulated as an energy
optimization problem. Based on this formulation, Gast et al. [2015]
presented an optimization algorithm that enabled for faster and
more robust simulation of stiff systems at larger time steps than
is possible using traditional Newton-based methods. Bouaziz et al.
[2014] introduced projective dynamics, a fast and efficient local-
global algorithm for solving problems with linear constitutive mod-
els and soft constraints. Subsequent work has applied projective
dynamics to fluid simulation [Weiler et al. 2016] and real-time skin-
ning [Komaritzan and Botsch 2018, 2019], and has combined it with
model reduction [Brandt et al. 2018]. Liu et al. [2017] showed that
projective dynamics can be interpreted as a quasi-Newton method,
and designed a method using L-BFGS for real-time simulation of
hyperelastic materials. Overby et al. [2017] reinterpreted projective
dynamics in terms of ADMM optimization algorithm, permitting
the use of nonlinear energies and dynamic hard constraints.

Peng et al. [2018] introduced Anderson acceleration to the graph-
ics community and used it to accelerate the convergence of many

ACM Trans. Graph., Vol. 40, No. 4, Article 82. Publication date: August 2021.

WRAPD: Weighted Rotation-aware ADMM for Parameterization and Deformation • 82:3

deformation optimization algorithms, including projective dynam-
ics. Zhang et al. [2019] used Anderson acceleration to improve the
convergence of ADMM applied to both simulation and geometry
processing tasks. Recently, Fu et al. [2020] observed that Douglas-
Rachford splitting is equivalent to ADMM, and used this fact to for-
mulate an efficient Anderson-accelerated Douglas-Rachford (AADR)
method for convex problems. Ouyang et al. [2020] expanded the
scope of AADR to handle nonconvex problems too, and they demon-
strated that it accelerates more reliably compared to Anderson-
accelerated ADMM.

3 BACKGROUND
We consider a generic geometry optimization problem on a dis-
cretized model with 𝑛 nodes and 𝑚 elements (springs, triangles,
and/or tetrahedra) in R𝑑 where 𝑑 = 2, 3. The positions of the nodes
are collected into a matrix X = [x1, . . . , x𝑛]𝑇 ∈ R𝑛×𝑑 . For the 𝑖th
element, its deformation gradient (the Jacobian of the deformation
map) is a linear function of the node positions. Consequently, it can
be expressed in the form F𝑖 = (D𝑖X)𝑇 for some matrix D𝑖 ∈ R𝑘×𝑛 ,
where 𝑘 = 1, 2, 3 for springs, triangles, and tetrahedra respectively.
Finally, we are given a deformation energy function Ψ that deter-
mines the total energy of the model as 𝐸 =

∑𝑚
𝑖=1𝑉𝑖Ψ(F𝑖) where𝑉𝑖 is

the measure (area or volume) of the 𝑖th element. Our goal is to find
the node positions X to minimize 𝐸. User-specified controls may
also be added to the problem, in the form of linear constraints and/or
quadratic penalties; we omit these for simplicity in our exposition.
Since the deformation energy of each element depends only on

some low-dimensional local coordinates describing its deformation,
local-global solvers such as projective dynamics and ADMM-PD
exploit this property by treating these local coordinates as new
optimization variables (denoted P𝑖 or Z𝑖). In the “local step” we min-
imize the deformation energy in the space of these local coordinates.
In the “global step” we reconstruct node positions such that the
element deformations best match the optimized local coordinates.

The choice of local coordinates has a significant impact on the con-
vergence of local-global optimization [Bouaziz et al. 2012, Fig. 10].
In existing work, the local coordinates are chosen to be linear
and translation-invariant in X, typically the deformation gradient.
Overby et al. [2017] use this choice for local coordinates. We will
next summarize their main results and solver using our notation.
Using the shorthand {Z𝑖 } to refer to the collection of all local

variables Z1, . . . ,Z𝑚 , the problem is expressed as

min
X,{Z𝑖 }

𝐸 ({Z𝑖 }) (1a)

s.t. C𝑖 (X,Z𝑖) = 0 ∀𝑖 = 1, . . . ,𝑚, (1b)

where the linear coupling constraint C𝑖 for the 𝑖th element is

C𝑖 (X,Z𝑖) := (D𝑖X)𝑇 − Z𝑖 = 0. (2)

To find a solution to the problem in (1) we begin by constructing
an associated augmented Lagrangian function. For this we must
introduce an additional set of𝑚 dual variables {U𝑖 }. Like Overby
and colleagues, in our construction we will hold fixed the ADMM
variable 𝜌 = 1 and choose per-element weights 𝑤𝑖 to improve
convergence. With these choices the augmented Lagrangian for our

problem is

𝐿(X, {Z𝑖 }; {U𝑖 }) = 𝐸 ({Z𝑖 }) +
𝑚∑
𝑖=1

𝑤2
𝑖

2

C𝑖 (X,Z𝑖) + U𝑖

2
𝐹
, (3)

where 𝑤𝑖 is the scalar weight for the ith element. Following the
ADMM algorithm this yields the iteration

X← argmin
X

𝐿(X, {Z𝑖 }; {U𝑖 }), (4a)

Z𝑖 ← argmin
Z𝑖

𝐿(X,Z𝑖 ;U𝑖) ∀𝑖 = 1, . . . ,𝑚, (4b)

U𝑖 ← U𝑖 + C𝑖 (X,Z𝑖) ∀𝑖 = 1, . . . ,𝑚. (4c)

Element translations are determined by the global step, which
acts on X by solving (4a). For this problem formulation, with static
weights and linear coupling constraints, the global step is tanta-
mount to a single linear solve AX = B with a constant global matrix
A that can be prefactored [Overby et al. 2017]. The matrix A and
right-hand side B can be computed by summing contributions from
all elements according to

A =

𝑚∑
𝑖=1

𝑤2
𝑖 D

𝑇
𝑖 D𝑖 , (5a)

B =

𝑚∑
𝑖=1

𝑤2
𝑖 D

𝑇
𝑖 (Z𝑖 − U𝑖) . (5b)

Then the local step solves (4b) in parallel over all elements. Specifi-
cally, each element’s Z𝑖 is updated by solving

argmin
Z𝑖

Ψ(Z𝑖) +
𝑤2
𝑖

2

(D𝑖X)𝑇 − Z𝑖 + U𝑖

2
𝐹
. (6)

As pointed out by Overby et al. [2017], this is a proximal operator
of Ψ at (D𝑖X)𝑇 + U𝑖 , and for rotation-invariant Ψ it can be per-
formed on just the singular values of Z𝑖 . Specifically, we compute
the SVD of (D𝑖X)𝑇 + U𝑖 and perform the above minimization on
only the singular values, while keeping the same singular vectors.
The minimization is performed using Newton’s method with a flip-
preventing line search. Finally, the dual variables U𝑖 are updated
according to (4c).

This formulation has twomajor limitations. First, the deformation
gradient is a rotation-dependent measure. This means local coor-
dinates based on F𝑖 change whenever an element is re-oriented in
space, even when it is not at all stretched within its own local basis.
Consequently, algorithms that solve (1) can be prohibitively slow
to make progress whenever the solution requires a large number
of element rotations. In Section 7 we provide many practical ex-
amples where convergence is slowed when the local step is tasked
with handling even mild amounts of element rotations. Second,
ADMM algorithms designed to solve (1) require a prescription for
per-element weights. These are notoriously difficult to define, and if
poorly chosen the algorithm may be slow to make progress or even
fail to converge. We address both of these problems and present
solutions in Sections 4 and 5, respectively.

4 ROTATION-AWARE ADMM
Our key idea here is to choose local coordinates that are invariant
to rotations as well as translations. In particular, we factorize the

ACM Trans. Graph., Vol. 40, No. 4, Article 82. Publication date: August 2021.

82:4 • Brown and Narain

Fig. 2. An illustration of the benefits of rotation-invariant local coordinates.
For a unit length spring between vertices 𝑎 and 𝑏, the analogues of F𝑖 and
S𝑖 are the edge vector e = x𝑎 − x𝑏 and its magnitude ∥e∥ respectively. The
spring energy as a function of e (left) is nonconvex and has a codimension-1
manifold of minima, while as a function of ∥e∥ (right) it is strictly convex.

deformation gradient of each element using the polar decomposi-
tion F𝑖 = R𝑖S𝑖 , then we use only the symmetric factor S𝑖 as the
local variable. As a function of S𝑖 , Ψ is much more well-behaved
(Fig. 2). Further, this formulation cleanly separates the geometric
nonlinearity of rotations from the material nonlinearity of the defor-
mation energy. The price of this modification is that the objective
in the global step becomes nonlinear. Nevertheless, it remains a
smoothly defined function with none of the infinite barrier terms
that make energies like neo-Hookean and symmetric Dirichlet chal-
lenging to minimize. As we shall see, it can be efficiently solved by
a quasi-Newton algorithm like L-BFGS while still taking advantage
the prefactored matrix in (5a).

For brevity we begin by introducing notation that will be used in
the description of our algorithm. We will use sym(A) to denote a
function that takes as input a matrix A and returns its symmetric
factor S computed using the polar decomposition A = RS. (Note
that in general sym(A) ≠ 1

2 (A + A
𝑇).) We will also continue to

use Z𝑖 to refer to the local coordinates of the ith element, and {Z𝑖 }
for the set of all local coordinates in the system. This allows us to
concretely discuss the stages of our algorithm in terms of its effect
on just two state variables: X and {Z𝑖 }. Now we will reformulate
(1) in terms of this alternate set of optimization variables. Our new
problem formulation is

min
X,{Z𝑖 }

𝐸 ({Z𝑖 }) (7a)

s.t. {Csym
𝑖
(X,Z𝑖)} = 0, (7b)

where the symmetric coupling constraint for the ith element is

Csym
𝑖
(X,Z𝑖) := sym

(
(D𝑖X)𝑇

)
− Z𝑖 = 0. (8)

This formulation is in fact equivalent to (1). To see this, recall that
for rotationally-invariant deformation energiesΨ(F𝑖) = Ψ(sym(F𝑖)).
The additional constraint (7b) ensures that the optimization vari-
ablesZ𝑖 always correspond to the symmetric part of the deformation
gradient.
We solve (7) using ADMM with the variables X and {Z𝑖 }. The

problem deviates from the traditional ADMM framework, in which
the coupling between the split variables is expected to be a linear
constraint. In our case, the coupling constraint in (8) is nonlinear.
Nevertheless, ADMM has been applied successfully with nonlinear
coupling constraints in existing work [Benning et al. 2016], so we
proceed with an ADMM approach as well.

The augmented Lagrangian for this problem is

𝐿(X, {Z𝑖 }; {U𝑖 }) = 𝐸 ({Z𝑖 }) +
𝑚∑
𝑖=1

𝑤2
𝑖

2

Csym

𝑖
(X,Z𝑖) + U𝑖

2
𝐹
, (9)

where U𝑖 is the Lagrange multiplier estimate for Csym
𝑖

. Following
the ADMM algorithm, we have the iteration

X← argmin
X

𝐿(X, {Z𝑖 }; {U𝑖 }), (10a)

Z𝑖 ← argmin
Z𝑖

𝐿(X,Z𝑖 ;U𝑖) ∀𝑖 = 1, . . . ,𝑚, (10b)

U𝑖 ← U𝑖 + Csym
𝑖
(X,Z𝑖) ∀𝑖 = 1, . . . ,𝑚. (10c)

The local step is almost the same as in the standard ADMM formu-
lation from the previous section. The only difference is the proximal
operator of Ψ is instead evaluated at sym((D𝑖X)𝑇) + U𝑖 . Again, in
practice the proximal solve can be performed on just the singular
values of Z𝑖 .

4.1 The global step with rotation awareness
The first stage of the iteration is the global step (10a). We update X
by solving

argmin
X

𝑚∑
𝑖=1

𝑤2
𝑖

2

sym (
(D𝑖X)𝑇

)
− P𝑖

2
𝐹

, (11)

where P𝑖 = Z𝑖 − U𝑖 , which is introduced for simplification. We
solve this minimization problem using L-BFGS. This requires an
expression for the gradient of the objective function with respect
to X. Here we give the main result; a derivation is provided in the
supplementary document. This derivative can be found to be

𝑑𝐿

𝑑X
=

𝑚∑
𝑖=1

𝑤2
𝑖 D

𝑇
𝑖 M

𝑇
𝑖 , (12)

where eachM𝑖 is computed as follows (we omit the element index 𝑖
on intermediate variables for clarity):

F = (D𝑖X)𝑇 , (13)
(U, 𝚺,V) = svd(F), (14)

H =

[
𝜎𝑖

𝜎𝑖+𝜎 𝑗
(v𝑇

𝑖
Pv𝑗 + v𝑇𝑗 Pv𝑖)

]
𝑖 𝑗

(15)

M𝑖 = F − UHV𝑇 . (16)

L-BFGS does not require the exact Hessian of 𝐿; it progressively
updates an approximate Hessian each iteration by using a history
of past iterates. However, it does require an initial Hessian approxi-
mation as input. There are various options for initializers, but we
have had good success following the approach proposed by Liu
et al. [2017]. Specifically, we use the constant prefactored weighted
Laplacian from the ADMM-PD formulation in (5a). One important
benefit of this choice is that our method behaves no worse than
ADMM-PD when L-BFGS has not built up a history.

The L-BFGS history window determines how many past iterates
are used to approximate the Hessian. If set too small then there may
be insufficient information for a good approximation, but if too large
then the per-iteration cost increases, and distant past iterates may
negatively bias the approximation. We use a window length of 𝑙 = 6
in our method. Further, to enable each global step to immediately

ACM Trans. Graph., Vol. 40, No. 4, Article 82. Publication date: August 2021.

WRAPD: Weighted Rotation-aware ADMM for Parameterization and Deformation • 82:5

Fig. 3. Comparing global step termination methods using two symmetric
Dirichlet parameterization examples. Our adaptive criterion is compared
to three fixed tolerances. Top two plots: Energy error vs. time and total
global step L-BFGS iterations vs. ADMM iteration, respectively. A dashed
line indicates when an intermediate solution has triangle flips. Bottom two
plots: Same as above, but using a different parameterization example. To
the right of each pair of plots the corresponding mesh is textured with its
solution.

benefit from previous iterates, we maintain the L-BFGS history
across ADMM iterations whenever possible.

L-BFGS termination criterion. One important tradeoff is the bal-
ance between the time spent on solving the global step vs. the local
steps. Since L-BFGS is only used in the global step, running it for
too many iterations will not necessarily improve the overall con-
vergence of ADMM. It is important to allow the local step to run
often, especially when a problem is dominated by non-rotational
material deformations. The relative importance of each the local
and global steps is not only problem dependent, it may also change
during minimization. For these reasons we favor an adaptive termi-
nation criterion that gives more time to whichever step is making

more progress in minimizing the problem. In particular, we keep
running L-BFGS iterations as long as each iteration is decreasing
the augmented Lagrangian 𝐿 by more than the previous local step
did. This leads to the termination criterion

ΔX :
𝑑𝐿

𝑑X
≤ 𝜅 |Δ𝐿 | , (17)

where ΔX is the step to be taken by the next L-BFGS iteration, and
|Δ𝐿 | is the change in the augmented Lagrangian from the previous
local step (before the U-update). The coefficient 𝜅 allows us to tune
the relative importance of each step. We discuss empirically good
choices for 𝜅 in Section 6.
In Figure 3 we compare our adaptive termination criterion to

fixed tolerances using two different parameterization examples. Our
adaptive criterion outperforms fixed 10−6 and 10−9 thresholds, and is
competitive with the much less precise 10−3 tolerance. This shows
that the L-BFGS solves do not need to be solved very precisely.
Our adaptive criterion takes advantage of this and only performs
additional iterations when they are most beneficial for convergence.
While we allow L-BFGS to run for a maximum of 100 iterations, in
practice the global step almost always terminates in much fewer
iterations — typically only 1 or 2.

Rotation-aware ADMM for ARAP. It is instructive to consider
how rotation-aware ADMM behaves on the ARAP energy Ψ(F) =
∥ sym(F) − I∥2

𝐹
. In this case, the ADMM local step has a closed-form

update rule,

Z𝑖 ←
1
2
(I + sym((D𝑖X)𝑇) + U𝑖), (18)

U𝑖 ← U𝑖 + sym((D𝑖X)𝑇) − Z𝑖 . (19)

Therefore P𝑖 = Z𝑖 − U𝑖 = I, and the global objective becomes
exactly the total ARAP energy over the entire mesh. That is, the
method reduces to solving the ARAP problem entirely in the global
step using L-BFGS. In contrast, the original ADMM-PD algorithm
behaves similarly to the classical local-global strategy, as observed
by [Overby et al. 2017].

Practical benefits. In the first plot of Figure 4 we compare four
variants of the ADMM method (with/without rotation-awareness,
with/without weight updates) run on a practical quasi-static exam-
ple. The rotation-aware algorithm (R-ADMM) dramatically outper-
forms ADMM-PD. For this comparison both methods use carefully
tuned static weights. In Figure 5 we provide a similar comparison,
but this time run on a parameterization example. Here rotation
awareness is still highly beneficial, but to a lesser extent. Instead, for
this parameterization problem weight updates are more important
for rapid early progress. In the next section we will discuss our
dynamic reweighting strategy for performing weight updates that
can be used for often faster and more reliable convergence.

5 DYNAMIC REWEIGHTING
One notable limitation of ADMM-PD is that convergence greatly
depends on the choice of weights. Lower weights can allow each
iterate to make bigger updates, but if set too low the algorithm may
not converge at all. In contrast, higher weights improve stability at
the expense of performance. Existing methods use simple heuristics
for defining the weights from approximate curvature information.

ACM Trans. Graph., Vol. 40, No. 4, Article 82. Publication date: August 2021.

82:6 • Brown and Narain

Fig. 4. Normalized position error vs. time comparisons using a quasi-static
Neo-Hookean example. Top left: Comparing ADMM-PD [Overby et al.
2017], W-ADMM (dynamic reweighting), R-ADMM (rotation-awareness),
and WRAPD (has both). Top right: Comparing WRAPD to R-ADMM with
different weight multipliers 𝛽 . Bottom left: Deformed initial mesh. Con-
strained regions are colored red. Bottom right: Quasi-static solution subject
to constraints.

Overby et al. show that the energy Hessian evaluated in the rest
pose is typically a good choice for the (squared) weights. Liu et al.
[2017] instead use the slope of the best linear approximation to
the stress function, integrated over an interval of expected defor-
mations. Both of these methods may yield poor approximations
to the Hessian when a mesh is highly deformed. To address this
Overby and colleagues globally scale the weights by a user-specified
factor. This is not a robust solution, since it is impossible to predict
a good multiplier. Also, a few problematic elements may necessitate
a very high multiplier for the whole mesh, and that will greatly
impact performance. An example of these problems and limitations
is shown in the right plot of Figure 4. This example demonstrates
how sensitive convergence is to the choice of weight multiplier.

In the following subsections we discuss our method for dynami-
cally updating weights during optimization. Later in Section 6 we
demonstrate the effectiveness of this approach in both quasi-static
and parameterization applications.

5.1 Weighting heuristic and Reweighting Step
Our basic idea is to derive dynamic weights from the maximum
eigenvalue of the current Hessian. That is, we would like to derive
weights from an effective stiffness given by

K𝑒 (𝝈) = 𝜆max (K(𝝈)), (20)

where 𝜎 are the singular values in the current state and K = 𝑑2Ψ
𝑑𝝈2 .

This is similar in concept to the heuristic Overby and colleagues
use, except that theirs is evaluated at the reference state. Before

Fig. 5. Energy error vs. time comparisons using a symmetric Dirichlet pa-
rameterization example. Left : Comparing ADMM-PD [Overby et al. 2017],
W-ADMM (dynamic reweighting), R-ADMM (rotation-awareness), and
WRAPD (has both). Middle: Original mesh textured with solution. Right :
Distortion-mapped UV coordinates; redder means higher distortion.

applying global multipliers, they set weights according to

𝑤2
0 = 𝑉0K𝑒 (𝝈0) = 𝑉0𝜆max (K0), (21)

where the subscript 0 is used to indicate that a term is evaluated
in the zero-energy state, and 𝑉0 is the reference measure (area or
volume).

It is tempting to use (20) and set weights to 𝑤2 = 𝑉0K𝑒 every
ADMM iteration. However, there are a number of problems with
this approach. At initialization a highly distorted element would
call for a very high weight. This would impede early progress, often
unnecessarily, since usually the optimized solution is much less
distorted and can be attained faster with smaller weights. Another
problem with constantly changing weights is the effect it has on
the global step. One of the benefits of ADMM is its ability to use
an unchanging prefactored matrix. However, each time weights are
changed the A must be refactorized. Since A is the initial Hessian
approximation for L-BFGS, its history must be cleared whenever A
is changed. These operations incur extra overhead and hurt rotation-
aware acceleration.

With consideration for the aforementioned issues, our method for
computing and updating weights is as follows. First, we set weights
to their reference values at initialization using (21). Then, at the end
of each local step we compute the singular values of the updated
{Z𝑖 }. We use local variables as opposed to X since the latter is not
guaranteed to be free from inversions. We then use (20) to obtain
the effective stiffness K𝑒 in the current state, and use it to compute
candidate weights,𝑤cand. These are clamped to within an acceptable
range, specifically,

𝑤2
cand = clamp(𝑉0K𝑒 , 𝛽min𝑤

2
0 , 𝛽max𝑤

2
0), (22)

where 𝛽min and 𝛽max are user-specified values for clamping.
To prevent small changes inweights from triggering global reweight-

ing too frequently, we only reweight when the candidate weights
differ significantly from the current weights. After the global step,
we compare each element’s current weight𝑤 to its latest candidate
weight, 𝑤cand. If the ratio between them exceeds some threshold,
then that is an indication that at least one element’s weight needs
updating. Specifically, we flag the entire mesh for reweighting if

ACM Trans. Graph., Vol. 40, No. 4, Article 82. Publication date: August 2021.

WRAPD: Weighted Rotation-aware ADMM for Parameterization and Deformation • 82:7

ALGORITHM 1: WRAPD
forall elements 𝑖 in parallel do

Initialize Z𝑖 ← sym
(
(D𝑖X)𝑇

)
Initialize U𝑖 ← 0
Initialize weight to reference value using (21)

end
Initialize A using (5a) and compute Cholesky factorization
while not yet terminated do

Compute augmented Lagrangian 𝐿0 using (9)
forall elements 𝑖 in parallel do

Update Z𝑖 using (10b)
Update candidate weight using (22)

end
Compute augmented Lagrangian 𝐿1 using (9)
|Δ𝐿 | ← |𝐿1 − 𝐿0 |
forall elements 𝑖 in parallel do

Update U𝑖 using (10c)
end
do

Update X by performing an L-BFGS iteration
Check for global step termination using (17)

while global step not yet terminated
if any element needs reweighting using (23) then

forall elements 𝑖 in parallel do

U𝑖 ←
(

𝑤2
𝑖

𝑤2
cand,𝑖

)
U𝑖

𝑤𝑖 ← 𝑤cand,𝑖
end
Update A using (5a) and refactorize
Clear the L-BFGS history

end
Check for ADMM termination

end

any element satisfies

max

(
𝑤2
cand
𝑤2 ,

𝑤2

𝑤2
cand

)
≥ 𝛾, (23)

where 𝛾 is a controllable threshold parameter. We empirically found
that a value of 𝛾 = 1.5 works well, so we use this for all applications.
In our supplementary document we include experimental results
that show how performance varies as a function of 𝛾 in practical
examples.
If the mesh is flagged for reweighting, then we perform the fol-

lowing operations. First, the ADMM {U𝑖 } variables are rescaled by
a factor of 𝑤2

𝑤2
cand

to maintain consistency between the optimization

variables. The particular factor is chosen because the {U𝑖 } are in-
versely proportional to the squared weights [Overby et al. 2017].
After rescaling, all element weights are set to their candidate values
and the A matrix used in the global step is updated and factorized.
Finally, the L-BFGS history is cleared.

Our proposed methodWRAPD uses the rotation-aware algorithm
introduced in the previous section coupled with dynamic reweight-
ing. A summary of WRAPD is given in Algorithm 1.

6 APPLICATIONS
In this section we present applications of our algorithm to two
types of geometric optimization problems: quasi-static deformation
and parameterization. Although WRAPD is used for both, each has
unique characteristics that benefit from specialized treatment. We
will discuss specific parameter and heuristic choices that we have
empirically found to yield good performance.

6.1 Quasi-static deformation
During the early phase of optimization we use static reference
weights, so dynamic reweighting is not used. We make this choice
because during the early iterations we are not concerned with late-
phase convergence quality. Rather, the goal is for the mesh to reduce
initial distortion as quickly as possible. We have found that only
once an intermediate solution has been obtained is it necessary to
consider adequate late-convergence weighting. Accordingly, we set
𝛽min = 𝛽max = 1 for the first 𝑘rw iterations, then 𝛽min = 0.1 and
𝛽max = 10 afterwards. We empirically settled on a value of 𝑘rw = 50
for all of our quasi-static demos. Beyond iteration 𝑘rw we follow the
reweighting method outlined in Section 5.

For the L-BFGS early termination coefficient, we use 𝜅 = 1. This
value was empirically obtained through experiments, as it was found
to yield much better convergence in several demos.

6.2 Parameterization
Mesh parameterization is a challenging computational problem
tasked with obtaining a mapping between vertex coordinates in R3
and a parameter domain surface in R2. Ideally this mapping should
be foldover-free and have low distortion. The main task is to then
reduce distortion from an initial embedding while still maintaining
a foldover-free parameterization. This is a highly nonlinear problem
that we solve using WRAPD.

As a first step we rescale the input mesh to unit area. This allows
us to define solver parameters that work well for inputs of arbitrary
scale. We then attempt to obtain an initial state by applying a har-
monic embedding using cotangent weights. If this yields any flipped
triangles we fall back to Tutte’s embedding. For fair comparison this
procedure is used for all methods in this paper.
We observe any nearly-degenerate triangle from the initial em-

bedding has a large effective stiffness according to (20). Thus, for the
first ADMM iteration we use static reference weights to help mas-
sively reduce initial distortion. Some problems do require specific
elements to maintain high distortion in order to minimize global
distortion. So, we would like for reweighting to be fairly insensitive
to early distortion, but consider it more strongly in later iterations.
To achieve this we devised a geometrically-increasing maximum
weight clamp 𝛽max. Specifically, as functions of the ADMM iteration
number 𝑘 = 0, 1, 2, . . . , we define

𝛽min (𝑘) = 1, (24a)

𝛽max (𝑘) = min(10(1.5)𝑘 , 109), (24b)

We fix 𝛽min = 1 because for parameterization we have found it
is best if candidate weights are never allowed to be smaller than
reference values. A hard cap of 109 ensures proper numerical con-
ditioning during the global step linear solves. Difficult problems

ACM Trans. Graph., Vol. 40, No. 4, Article 82. Publication date: August 2021.

82:8 • Brown and Narain

may call for larger caps, but we find this to be more than sufficient
in the vast majority of cases. In our supplementary document, we
experimentally validate the need for increasing 𝛽max gradually.

Finally, we have chosen an L-BFGS early termination coefficient
of 𝜅 = 2, where the termination condition is given by (17). This is
twice as large as what we use for quasi-statics. This allows the global
step to terminate early with fewer iterations, which is beneficial for
our goal to prioritize local steps and reweighting over additional
global step iterations.

6.2.1 WRAPD as an Initializer. Although WRAPD makes good
progress in both the early and late phases of convergence, it is
not a second-order method. One algorithm with this attractive prop-
erty is CM [Shtengel et al. 2017]. Theirs, like other Newton methods,
generally starts slower but rapidly accelerates when nearing the
solution. These opposing strengths motivate us to consider a hybrid
approach, in which we use WRAPD as an initializer for CM. In the
paper we will refer to this as WRAPD+CM.

Others have advocated for switching to second-order methods on
challenging problems as well [Rabinovich et al. 2017, Fig. 19], [Jiang
et al. 2017, Fig. 4 and Fig. 11]. Liu et al. [2018] use SLIM in their early
iterations to quickly reduce initial distortion before switching to
CM. However, we find WRAPD to be much more effective for this
task, and to our knowledge ours is the first to use an ADMM-based
solver as an initializer for parameterization.
In the WRAPD+CM method we run WRAPD for a minimum of

one iteration. After each iteration we check to see if there are any
element flips in the mesh. If there are, further iterations of WRAPD
are performed, because CM requires a flip-free initialization. Once a
valid state is attained CM is used thereafter and run to convergence.

7 RESULTS
The machine used to generate all our results and performance mea-
surements contained a ten-core Intel i9-10900K CPU @ 3.70 GHz,
and 128 GB of RAM.

7.1 Quasi-static Deformation
Our algorithm for solving quasi-static deformation problems was
validated using a variety of different meshes and initial conditions.
In all of the following tests we used Neo-Hookean elasticity with
a Poisson’s ratio of 0.45, but any other rotation-invariant energy
model could be used too. We include comparisons to several existing
techniques, namely ADMM-PD [Overby et al. 2017], BCQN [Zhu
et al. 2018], L-BFGS [Liu et al. 2017], and AADR [Ouyang et al. 2020].
In agreement with the observations of Ouyang and colleagues, we
found that in all our experiments AADR outperformed the previous
AA-ADMM method [Zhang et al. 2019]. For this reason we have
omitted comparisons to AA-ADMM.

In our experiments, BCQN has relatively poor performance com-
pared to other techniques, in contrast to the results reported by Zhu
et al. [2018]. We attribute this to the fact that their implementation
of BCQN, which we use, performs linear solves using CHOLMOD
[Chen et al. 2008], while all other methods tested use PARDISO
[Alappat et al. 2020; Bollhöfer et al. 2020, 2019]. Considering their
observations that PARDISO is “usually 1.4 to 3 times faster” than
CHOLMOD, we expect that using the former would make their

Initial Final log(∥X − X∗∥) vs. t (s)

(a)

(b)

(c)

Fig. 6. Quasi-static neo-Hookean examples. Left : The initial deformed
meshes. Constrained regions are colored red. Middle: Minimum energy
solutions, subject to constraints. Right : Plots of normalized position error
vs. time.

results more competitive with other methods, but still not faster
than WRAPD.

7.1.1 Performance Metric. Compared to stretching deformations,
rotational modes such as bending and twisting often contribute
very weakly to the problem objective. Thus, although an algorithm
may make significant early progress to reduce distortion, it can
still be far from the optimal solution X∗. An example of this is
illustrated in Figure 1, where we compare plots of energy 𝐸 and
position error ∥X − X∗∥ vs. computation time. In this example the
limbs and tail of the mesh model undergo bulk rotations in the late
phase of convergence. Though this has a minor effect on the energy,
it is visually significant for quasi-static deformation applications.
We observed similar behavior in most of our tests, and for this
reason we prefer to plot position error vs. computation time when
comparing methods for quasi-statics.

For each problem the optimal solution X∗ is obtained by running
R-ADMM with static weights for a large number of iterations. For
this task we use a large weight multiplier to ensure convergence.
We confirmed that given enough iterations all algorithms get arbi-
trarily close to this solution, which validates that it is the correct
configuration.

7.1.2 Experiments. We begin with some illustrative examples in-
tended to evaluate the performance of differentmethods on stretching-
dominated and rotation-dominated problems. All of our perfor-
mance numbers are reported in Table 1.

ACM Trans. Graph., Vol. 40, No. 4, Article 82. Publication date: August 2021.

WRAPD: Weighted Rotation-aware ADMM for Parameterization and Deformation • 82:9

Table 1. Quasi-static Neo-Hookean examples data. V and T denote the number of vertices and tetrahedra in each mesh, respectively. The terms 𝑁𝑐 and 𝑡𝑐
denote the iterations and time required to bring the normalized position error down to 10−4. The fastest times are bolded. A dash is used for methods which
were not included in the corresponding test.

WRAPD
ADMM-PD BCQN L-BFGS AADR

Fig.
V/T (Ours)

(×103) 𝑁𝑐 𝑡𝑐 (s) 𝑁𝑐 𝑡𝑐 (s) 𝑁𝑐 𝑡𝑐 (s) 𝑁𝑐 𝑡𝑐 (s) 𝑁𝑐 𝑡𝑐 (s)

1 26/98 239 12.5 196604 3693 16167 13520 904 120 1786 138
6(a) 5/20 305 2.3 217 1.1 498 30.2 123 7.1 83 1.4
6(b) 5/20 158 1.3 548 2.6 166 10.7 50 2.0 94 1.6
6(c) 5/20 134 1.3 9757 42.2 282 34.2 249 4.9 249 5.0
7(a) 16/55 163 4.1 60883 559 29578 12301 417 16.3 590 23.3
7(b) 16/57 134 3.5 4104 45.6 1352 604 179 9.4 284 14.7
7(c) 16/58 429 11.4 122831 1270 6981 3107 336 15.4 860 34.3
7(d) 17/61 91 2.3 3900 47.4 1010 446 175 8.7 228 10.2
7(e) 25/94 224 10.5 168722 3078 10735 8459 650 77.9 1255 86.7
7(f) 25/93 239 9.7 123683 2107 6770 5372 471 52.2 1196 84.9
7(g) 26/102 117 5.3 6973 144 1237 771 210 26.3 308 24.9

In Figure 6(a) two faces of a cube are pulled outwards and pinned
in place. The solution to this problem primarily involves element
stretching and compression across the mesh. Consequently, our
rotation-aware algorithm isn’t clearly beneficial for this problem.
However, this problem demonstrates that even in problems not dom-
inated by rotations, our algorithm has minimal additional overhead
so it remains competitive.
In Figure 6(b) an elastic cube is sheared by translating and pin-

ning the top and bottom faces. Although this problem still doesn’t
significantly exercise rotational modes of deformation, it does so
enough for WRAPD to outperform the ADMM-PD algorithm. In Fig-
ure 6(c) an elastic beam is initialized in a twisted configuration with
one face pinned. The solution for this problem is the zero-energy
untwisted state. Unlike the stretched beam, this problem almost
exclusively consists of rotational deformations and WRAPD greatly
outperforms all existing algorithms.
Next we consider less academic and more interesting examples

involving mild deformations in practical meshes. The meshes in
Figures 7(a)-7(d) were obtained from Zhu et al. [2018]. In almost
all these problems WRAPD converges much faster than the other
methods. The fastest among those we compared to is the L-BFGS
method of Liu et al. [2018], which nearly tiesWRAPD in the example
of Figure 7(c).
Finally we ran our algorithm on four harder problems with sig-

nificant, though still artistically plausible deformations (Figure 1
and Figures 7(e)-7(g)). The deformed and rest configuration meshes
were obtained from Su et al. [2019], and constrained regions were
chosen manually. In all these examples WRAPD converges at least
5x faster than all previous methods.
Our algorithm can also be used to solve problems with higher

co-dimensions, like deformable thin sheets in R3. As an example, in
Figure 8 a square of cloth is quasi-statically relaxed from a deformed
configuration, subject to constrained corners and the influence of
gravity. The cloth is modeled with ARAP elasticity, hard strain lim-
iting, and quadratic bending resistance [Bergou et al. 2006]. During

minimization large wrinkles propagate across the cloth, so the prob-
lem is dominated by element rotations. With rotation awareness
WRAPD easily handles this and quickly converges to a low energy
solution.

7.2 Parameterization
We performed a series of experiments to validate our parameteriza-
tion algorithm and compare it to state-of-the-art methods. Before
discussing results from these experiments, we will first briefly sum-
marize our performance metrics and early termination criteria.

7.2.1 Performance Metrics and Early Termination. Similar to Liu
et al. [2018], each parameterization algorithm is terminated early
when either the relative change between two successive iterations
gets sufficiently small, or the norm of the gradient is sufficiently
small. Specifically, at the end of iteration 𝑘 we terminate early if

|𝐸𝑘 − 𝐸𝑘−1 |
𝐸𝑘

≤ 𝜖 or ∥∇𝐸𝑘 ∥ ≤ 𝜖. (25)

We chose 𝜖 = 10−12 for our standard benchmarks and scaling tests
so we could accurately track the objective error down to within 10−6
of the solution. For these experiments the iterations and runtime
cost required to reach the 10−6 error are denoted as 𝑁𝑐 and 𝑡𝑐 ,
respectively. For practical reasons and for consistency with Liu and
colleagues, we used a bigger termination threshold of 𝜖 = 10−6 for
large dataset experiments. For those 𝑁𝑐 and 𝑡𝑐 are instead defined
as the iterations and time required to reach early termination. We
also tracked the number of iterations 𝜂 and runtime cost 𝜏 required
to bring the objective down to within one percent of the converged
energy solution,𝐸𝑐 . Thismetric is useful for quantifying how quickly
each algorithm makes progress in the early iterations.

7.2.2 Experiments. We provide comparisons to multiple existing
methods, including SLIM [Rabinovich et al. 2017], AKVF [Claici
et al. 2017], CM [Shtengel et al. 2017], and BCQN [Zhu et al. 2018].
We evaluate the effectiveness of our parameterization algorithm on
a variety of examples (Figure 11 and Table 2). In the graphs we use
a dashed line to indicate when there may be flipped triangles in the

ACM Trans. Graph., Vol. 40, No. 4, Article 82. Publication date: August 2021.

82:10 • Brown and Narain

Initial Final log(∥X − X∗∥) vs. 𝑡 (s)

(a)

(b)

(c)

(d)

(e)

(f)

(g)

Fig. 7. Quasi-static neo-Hookean examples. Left : The initial deformed
meshes. Constrained regions are colored red. Middle: Minimum energy
solutions, subject to constraints. Right : Plots of normalized position error
vs. time.

intermediate solution. When such flips are present, we use our dual
variables for computing the objective, since the energy function

Fig. 8. Quasi-static cloth example. The cloth is modeled with ARAP stretch-
ing resistance, hard strain limiting, and quadratic bending resistance
[Bergou et al. 2006]. Top Left : Plot of normalized position error vs. time. Top
Right : Initial deformation. Bottom: Comparison between ADMM-PD and
WRAPD intermediate solutions at select times.

in terms of these coordinates is always well defined. In the plots
we place a marker on the iteration immediately succeeding the last
iteration that had triangle flips. Beyond this marker our method is
plotted with a solid line, and it is during this solid-line region that a
flip-free parameterization is maintained.

In each of these cases WRAPD makes strong progress in the early
phases and dramatically reduces distortion in only a handful of iter-
ations. This is in great contrast to the other methods that each take
much longer to achieve similar quality approximate solutions. The
other algorithms’ slower early progress is primarily a consequence
of line search filtering. Specifically, each existing method uses a
flip-preventing line search to ensure that the mesh maintains local
injectivity. Each of those algorithms require this invariant to be
maintained every iteration. Since elements are most distorted near
the initialization, their line searches yield smaller step sizes, which
explains their much slower early progress. Our method does not
have this limitation, due to the way variables are split using ADMM.
Only our dual variables must remain injective, and this is trivially
maintained in our local step. Consequently our method is robust to
element inversions in the primal X variables. Moreover, while our
method does not strictly prevent triangles from flipping, in practice
we find that flips usually only occur in the beginning.

Since the standaloneWRAPD algorithm is an enhanced first-order
method, it is generally outperformed by CM (a second-ordermethod)
in the late phase of convergence. This limitation is overcome when
WRAPD is used as an initializer for CM. The hybrid WRAPD+CM
method is often faster than standalone WRAPD in the early phase,
and it is competitive with CM in the late phase.

ACM Trans. Graph., Vol. 40, No. 4, Article 82. Publication date: August 2021.

WRAPD: Weighted Rotation-aware ADMM for Parameterization and Deformation • 82:11

Table 2. Symmetric Dirichlet parameterization examples data. The mesh resolutions are specified in number of vertices V and triangles F. The terms 𝜂 (𝑁𝑐)
and 𝜏 (𝑡𝑐) denote the iterations and time required to reach the early (late) phases of convergence, respectively. The fastest times are bolded.

Fig.
V/F WRAPD (Ours) WRAPD+CM CM SLIM AKVF BCQN

(×103) 𝜂/𝑁𝑐 𝜏/𝑡𝑐 (s) 𝜂/𝑁𝑐 𝜏/𝑡𝑐 (s) 𝜂/𝑁𝑐 𝜏/𝑡𝑐 (s) 𝜂/𝑁𝑐 𝜏/𝑡𝑐 (s) 𝜂/𝑁𝑐 𝜏/𝑡𝑐 (s) 𝜂/𝑁𝑐 𝜏/𝑡𝑐 (s)

11(a) 18/35 7/114 0.10/0.94 4/14 0.06/0.26 10/17 0.18/0.32 12/739 0.19/11.9 6/44 0.16/1.34 35/264 1.57/17.5
11(b) 40/78 9/209 0.27/4.22 8/27 0.26/1.27 18/38 0.95/2.07 19/1343 0.81/57.2 19/134 1.35/10.3 114/326 8.92/38.3
11(c) 47/92 8/76 0.25/2.02 5/19 0.26/1.06 16/29 0.92/1.73 12/2864 0.54/130 14/148 1.07/14.1 69/737 6.76/134
11(d) 25/48 5/208 0.08/1.91 5/19 0.08/0.37 9/15 0.21/0.35 22/818 0.48/16.1 35/82 1.05/2.68 48/237 2.44/19.7
11(e) 44/86 8/77 0.20/1.47 4/17 0.16/0.72 11/20 0.44/0.82 15/2048 0.52/72.1 11/610 0.62/51.1 76/1154 6.75/191
11(f) 62/121 7/73 0.29/2.25 5/37 0.36/2.87 12/36 0.92/2.88 10/3920 0.66/255 19/1015 1.99/151 130/681 17.2/167
11(g) 18/32 23/314 0.17/3.77 6/89 0.05/0.90 17/74 0.13/0.69 46/235726 0.33/1455 9/4387 0.13/57.1 56/751 2.48/21.6
11(h) 21/40 6/60 0.08/0.66 3/21 0.05/0.42 12/31 0.21/0.56 12/897 0.18/13.6 9/36 0.24/0.99 36/229 1.58/14.4
11(i) 188/374 7/72 0.92/7.74 4/11 0.79/3.52 6/13 2.00/4.35 17/1065 5.29/333 19/514 7.40/212 61/351 25.8/195

Fig. 9. Results from running symmetric Dirichlet parameterization methods on the large datasets from Liu et al. [2018]. The performance numbers for each
run are normalized by the number of mesh vertices. For each dataset we show separate distributions for reaching the early and late phases of convergence.

For a more systematic comparison we ran our algorithm on the
three large datasets from Liu et al. [2018]. Runtime statistics from
these comparisons are shown in histograms in Figure 9. Since the
parameterization problems all have different resolutions, like Liu
and colleagues we chose to plot effective per-vertex runtime costs
in the histograms. Our standalone WRAPD algorithm outperforms
SLIM and AKVF in both the early and late phases. It is competitive
with CM in the early phase but CM is faster in the late phase due to
its second-order nature. However, WRAPD+CM is fastest among

all algorithms; it finishes the early phase 2x faster than CM, and is
slightly faster in the late phase, too.
To investigate the scalability of our algorithm we used the scal-

ability benchmark provided by Su et al. [2020]. In this benchmark
seven different resolutions of the Lucy mesh are parameterized,
and the results are shown in Figure 10 and Table 3. Both WRAPD
and WRAPD+CM scale well with increasing problem size in the
early phase. Since WRAPD+CM switches to CM by the late phase,
it exhibits excellent late phase scaling in close alignment with CM.

ACM Trans. Graph., Vol. 40, No. 4, Article 82. Publication date: August 2021.

82:12 • Brown and Narain

Table 3. Data from running a symmetric Dirichlet parameterization scaling test from Su et al. [2020]. The mesh resolutions are specified in number of vertices
V and triangles F. The terms 𝜂 (𝑁𝑐) and 𝜏 (𝑡𝑐) denote the iterations and time required to reach the early (late) phases of convergence, respectively. The fastest
times are bolded. A dash is used for methods which did not reach the late phase within 104 seconds.

V/F WRAPD (Ours) WRAPD+CM CM SLIM AKVF

(×103) 𝜂/𝑁𝑐 𝜏/𝑡𝑐 (s) 𝜂/𝑁𝑐 𝜏/𝑡𝑐 (s) 𝜂/𝑁𝑐 𝜏/𝑡𝑐 (s) 𝜂/𝑁𝑐 𝜏/𝑡𝑐 (s) 𝜂/𝑁𝑐 𝜏/𝑡𝑐 (s)

51/100 11/580 0.39/12.1 6/69 0.26/3.53 13/65 0.62/3.28 24/11569 1.04/518 19/294 1.43/28.2
105/206 9/2001 0.68/73.1 5/124 0.54/18.1 16/138 2.22/19.8 26/10197 3.23/1337 37/601 6.93/152
205/405 9/472 1.44/42.0 5/67 1.23/24.2 16/101 5.45/34.9 36/12086 11.1/3891 27/1636 11.9/989
403/800 9/517 3.04/97.3 9/78 3.01/60.5 18/76 14.4/63.2 29/— 22.1/— 30/3426 33.2/4790
813/1616 9/2271 7.15/755 6/76 7.88/174 25/83 57.0/195 31/— 68.6/— 41/— 112/—
1618/3224 9/4607 16.6/3183 6/118 21.2/629 23/85 117/448 36/— 182/— 71/— 455/—
3198/6376 9/7806 41.3/— 6/172 60.5/2704 29/152 445/2421 36/— 560/— 243/— 4217/—

Fig. 10. Symmetric Dirichlet parameterization scaling test from Su et al.
[2020]. Methods were run on seven different resolutions of the Lucy model.
The time required to reach the early (late) phase of convergence is plotted on
the left (right). The x and y axes increase logarithmicly in mesh resolution
(# triangles) and time, respectively.

8 CONCLUSION
Our work in this paper arose from two key insights: first, that
local-global solvers for geometry optimization should use rotation-
invariant local coordinates in order to fully exploit the problem
structure, and second, that element weights should be adapted to the
local curvature of the objective for optimal convergence. We have
shown that both goals can be achieved without adding substantial
computational overhead to the ADMM framework, and pay off
in dramatically improved convergence and stability. The resulting
WRAPD algorithm converges much faster than existing approaches
on many practical problems. It makes especially fast progress in
the early iterations, making it valuable both as a general-purpose
geometry optimization algorithm and as an initializer for more
expensive second-order methods such as CM.

8.1 Limitations and future work
In this work, we only minimize the sum of per-element distortion
energies, without considering any nonlocal constraints such as

non-interpenetration between different parts of the mesh. As a
result, our computed solutions are inversion-free but may not be
globally injective. Indeed, overlaps can be observed in some of our
parameterization results. Adding non-interpenetration constraints
to ADMM-based geometry optimization is ongoing work that we
hope to build on in the future.

As with the previous ADMM-PD algorithm, we cannot offer any
theoretical guarantees on convergence, since classical convergence
results for ADMM only apply to convex optimization problems
[Boyd et al. 2011]. While ADMM-PD can indeed fail to converge on
geometry optimization problems, particularly when the weights are
too low, WRAPD usually avoids this pitfall thanks to our reweight-
ing technique. Nevertheless, even with reweighting enabled, we
have observed that on the Liu et al. [2018] parameterization dataset,
WRAPD failed to reach the termination threshold of 𝜖 = 10−6 within
5000 iterations on 585 of the 15k meshes (3.8%). It did reach injec-
tivity on many of these meshes, allowing WRAPD+CM to converge
on all but 201 meshes (1.3%). No convergence failures occurred on
any of our other examples.

The ADMM optimization framework has only first-order conver-
gence, and despite our improvements to convergence speed, our
method inherits this asymptotic convergence behavior. As a result,
while we observe rapid progress in the early iterations, convergence
can slow down and lag behind second-order methods like CM in the
late phase. For applications where it is desired to reach very close to
the minimum, we therefore recommend using our algorithm as an
initializer to a second-order method, as in our WRAPD+CM variant
for parameterization.
Many implementations of the ADMM algorithm [Narain et al.

2016; Overby et al. 2017; Zhang et al. 2019], including ours, define
per-element weights to be scalar multiples of the identity matrix.
Typically the scalar multiple is derived from some characteristic
stiffness of the material. Using non-scalar weights could potentially
improve convergence, especially when some stretching modes are
stiffer than others. In the ADMM-PD algorithm the coupling of
geometric and material nonlinearity makes it difficult to define good
rotationally invariant weights. However since the local step of our
method only contains material nonlinearity, it may be possible to
derive reliable non-scalar weights directly from physical quantities
such as the material stiffness matrix.

ACM Trans. Graph., Vol. 40, No. 4, Article 82. Publication date: August 2021.

WRAPD: Weighted Rotation-aware ADMM for Parameterization and Deformation • 82:13

Our hybrid parameterization method has some features similar
to progressive parameterizations (PP) [Liu et al. 2018]. Like PP, our
hybrid method uses two different algorithms as subprocesses. For
strong early progress we use WRAPD, while PP uses SLIM. Both
our method and PP use CM in later iterations. However, a key
distinction between our method and PP is how reference triangles
are handled. We always use reference triangles with the same shape
as the triangles in the original 3D surface mesh. In contrast, the
main contribution of PP is their reference triangle updating scheme.
In their method reference triangles are regularly modified so as to
minimize element distortions and in turn reduce the complexity of
their sub-problems, solved with either SLIM or CM. We believe that
many algorithms, including ours, could benefit from this progressive
framework. Because of this observation, we have omitted a direct
comparison to PP. For future work we would like to explore using
the progressive framework in conjunction with our method.

ACKNOWLEDGMENTS
We would like to thank the anonymous reviewers for their valu-
able comments. We also appreciate the insightful discussions and
feedback received from Matthew Overby while working on this
project. This work was supported in part by the National Science
Foundation under grant IIS-1657089.

REFERENCES
Christie Alappat, Achim Basermann, Alan R. Bishop, Holger Fehske, Georg Hager, Olaf

Schenk, Jonas Thies, and Gerhard Wellein. 2020. A Recursive Algebraic Coloring
Technique for Hardware-Efficient Symmetric Sparse Matrix-Vector Multiplication.
ACM Trans. Parallel Comput. 7, 3, Article 19 (June 2020), 37 pages. https://doi.org/
10.1145/3399732

Martin Benning, Florian Knoll, Carola-Bibiane Schönlieb, and Tuomo Valkonen. 2016.
Preconditioned ADMM with Nonlinear Operator Constraint. In System Modeling
and Optimization, Lorena Bociu, Jean-Antoine Désidéri, and Abderrahmane Habbal
(Eds.). Springer International Publishing, Cham, 117–126.

Miklos Bergou, Max Wardetzky, David Harmon, Denis Zorin, and Eitan Grinspun.
2006. A Quadratic Bending Model for Inextensible Surfaces. In Proceedings of the
Fourth Eurographics Symposium on Geometry Processing (SGP ’06). Eurographics
Association, Aire-la-Ville, Switzerland, Switzerland, 227–230. http://dl.acm.org/
citation.cfm?id=1281957.1281987

Matthias Bollhöfer, Aryan Eftekhari, Simon Scheidegger, and Olaf Schenk. 2019.
Large-scale Sparse Inverse Covariance Matrix Estimation. SIAM Journal on Sci-
entific Computing 41, 1 (2019), A380–A401. https://doi.org/10.1137/17M1147615
arXiv:https://doi.org/10.1137/17M1147615

Matthias Bollhöfer, Olaf Schenk, Radim Janalik, Steve Hamm, and Kiran Gullapalli. 2020.
State-of-the-Art Sparse Direct Solvers. (2020), 3–33. https://doi.org/10.1007/978-3-
030-43736-7_1

Sofien Bouaziz, Mario Deuss, Yuliy Schwartzburg, Thibaut Weise, and Mark Pauly. 2012.
Shape-Up: Shaping Discrete Geometry with Projections. Comput. Graph. Forum 31,
5 (Aug. 2012), 1657–1667. https://doi.org/10.1111/j.1467-8659.2012.03171.x

Sofien Bouaziz, Sebastian Martin, Tiantian Liu, Ladislav Kavan, and Mark Pauly. 2014.
Projective Dynamics: Fusing Constraint Projections for Fast Simulation. ACM Trans.
Graph. 33, 4, Article 154 (July 2014), 11 pages. https://doi.org/10.1145/2601097.
2601116

S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein. 2011. . https://doi.org/10.1561/
2200000016

Christopher Brandt, Elmar Eisemann, and Klaus Hildebrandt. 2018. Hyper-Reduced
Projective Dynamics. ACMTrans. Graph. 37, 4, Article Article 80 (July 2018), 13 pages.
https://doi.org/10.1145/3197517.3201387

Yanqing Chen, Timothy A. Davis, William W. Hager, and Sivasankaran Rajamanickam.
2008. Algorithm 887: CHOLMOD, Supernodal Sparse Cholesky Factorization and
Update/Downdate. ACM Trans. Math. Softw. 35, 3, Article 22 (Oct. 2008), 14 pages.
https://doi.org/10.1145/1391989.1391995

S. Claici, M. Bessmeltsev, S. Schaefer, and J. Solomon. 2017. Isometry-Aware Precondi-
tioning for Mesh Parameterization. Comput. Graph. Forum 36, 5 (Aug. 2017), 37–47.
https://doi.org/10.1111/cgf.13243

Anqi Fu, Junzi Zhang, and Stephen Boyd. 2020. Anderson Accelerated Douglas–
Rachford Splitting. SIAM Journal on Scientific Computing 42, 6 (2020), A3560–A3583.

Theodore F. Gast, Craig Schroeder, Alexey Stomakhin, Chenfanfu Jiang, and Joseph M.
Teran. 2015. Optimization Integrator for Large Time Steps. IEEE Transactions on
Visualization and Computer Graphics 21, 10 (Oct. 2015), 1103–1115. https://doi.org/
10.1109/TVCG.2015.2459687

Zhongshi Jiang, Scott Schaefer, and Daniele Panozzo. 2017. Simplicial Complex Aug-
mentation Framework for Bijective Maps. ACM Trans. Graph. 36, 6, Article 186 (Nov.
2017), 9 pages. https://doi.org/10.1145/3130800.3130895

Martin Komaritzan and Mario Botsch. 2018. Projective Skinning. In Proc. ACM SIG-
GRAPH Symposium on Interactive 3D Graphics and Games.

Martin Komaritzan and Mario Botsch. 2019. Fast Projective Skinning. In Motion, Inter-
action and Games (MIG ’19). Association for Computing Machinery, New York, NY,
USA, Article 22, 10 pages. https://doi.org/10.1145/3359566.3360073

Shahar Z. Kovalsky, Meirav Galun, and Yaron Lipman. 2016. Accelerated Quadratic
Proxy for Geometric Optimization. ACM Trans. Graph. 35, 4, Article 134 (July 2016),
11 pages. https://doi.org/10.1145/2897824.2925920

Ligang Liu, Chunyang Ye, Ruiqi Ni, and Xiao-Ming Fu. 2018. Progressive Parameteriza-
tions. ACM Transactions on Graphics(SIGGRAPH) 37, 4 (2018).

Ligang Liu, Lei Zhang, Yin Xu, Craig Gotsman, and Steven J. Gortler. 2008. A Lo-
cal/Global Approach to Mesh Parameterization. In Proceedings of the Symposium on
Geometry Processing (SGP ’08). Eurographics Association, Goslar, DEU, 1495–1504.

Tiantian Liu, Sofien Bouaziz, and Ladislav Kavan. 2017. Quasi-Newton Methods for
Real-Time Simulation of Hyperelastic Materials. ACM Trans. Graph. 36, 4, Article
116a (May 2017), 16 pages. https://doi.org/10.1145/3072959.2990496

Sebastian Martin, Bernhard Thomaszewski, Eitan Grinspun, and Markus Gross. 2011.
Example-based Elastic Materials. ACM Trans. Graph. 30, 4, Article 72 (July 2011),
8 pages.

Rahul Narain, Matthew Overby, and George E. Brown. 2016. ADMM ⊇ Projec-
tive Dynamics: Fast Simulation of General Constitutive Models. In Proceedings
of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA ’16).
Eurographics Association, Aire-la-Ville, Switzerland, Switzerland, 21–28. http:
//dl.acm.org/citation.cfm?id=2982818.2982822

Wenqing Ouyang, Yue Peng, Yuxin Yao, Juyong Zhang, and Bailin Deng. 2020. Ander-
son Acceleration for Nonconvex ADMM Based on Douglas-Rachford Splitting. In
Computer Graphics Forum, Vol. 39. Wiley Online Library, 221–239.

Matthew Overby, George E. Brown, Jie Li, and Rahul Narain. 2017. ADMM ⊇ Projective
Dynamics: Fast Simulation of Hyperelastic Models with Dynamic Constraints. IEEE
Transactions on Visualization and Computer Graphics 23, 10 (Oct 2017), 2222–2234.
https://doi.org/10.1109/TVCG.2017.2730875

Yue Peng, Bailin Deng, Juyong Zhang, Fanyu Geng, Wenjie Qin, and Ligang Liu. 2018.
Anderson Acceleration for Geometry Optimization and Physics Simulation. ACM
Trans. Graph. 37, 4, Article 42 (July 2018), 14 pages. https://doi.org/10.1145/3197517.
3201290

Michael Rabinovich, Roi Poranne, Daniele Panozzo, and Olga Sorkine-Hornung. 2017.
Scalable Locally Injective Mappings. ACM Trans. Graph. 36, 2, Article 37a (April
2017). https://doi.org/10.1145/2983621

Anna Shtengel, Roi Poranne, Olga Sorkine-Hornung, Shahar Z. Kovalsky, and Yaron
Lipman. 2017. Geometric Optimization via Composite Majorization. ACM Trans.
Graph. 36, 4, Article 38 (July 2017), 11 pages. https://doi.org/10.1145/3072959.
3073618

Olga Sorkine and Marc Alexa. 2007. As-Rigid-as-Possible Surface Modeling. In Pro-
ceedings of the Fifth Eurographics Symposium on Geometry Processing (SGP ’07).
Eurographics Association, Goslar, DEU, 109–116.

Jian-Ping Su, Xiao-Ming Fu, and Ligang Liu. 2019. Practical Foldover-Free Volumetric
Mapping Construction. Computer Graphics Forum 38, 7 (2019), 287–297. https:
//doi.org/10.1111/cgf.13837

Jian-Ping Su, Chunyang Ye, Ligang Liu, and Xiao-Ming Fu. 2020. Efficient Bijective
Parameterizations. ACM Trans. Graph. 39, 4, Article 111 (July 2020), 8 pages. https:
//doi.org/10.1145/3386569.3392435

Marcel Weiler, Dan Koschier, and Jan Bender. 2016. Projective Fluids. In Proceedings of
the 9th International Conference on Motion in Games (MIG ’16). ACM, New York, NY,
USA, 79–84. https://doi.org/10.1145/2994258.2994282

Juyong Zhang, Yue Peng,Wenqing Ouyang, and Bailin Deng. 2019. Accelerating ADMM
for Efficient Simulation and Optimization. ACM Trans. Graph. 38, 6, Article Article
163 (Nov. 2019), 21 pages. https://doi.org/10.1145/3355089.3356491

Yufeng Zhu, Robert Bridson, and Danny M. Kaufman. 2018. Blended Cured Quasi-
newton for Distortion Optimization. ACM Trans. Graph. 37, 4, Article 40 (July 2018),
14 pages. https://doi.org/10.1145/3197517.3201359

ACM Trans. Graph., Vol. 40, No. 4, Article 82. Publication date: August 2021.

https://doi.org/10.1145/3399732
https://doi.org/10.1145/3399732
http://dl.acm.org/citation.cfm?id=1281957.1281987
http://dl.acm.org/citation.cfm?id=1281957.1281987
https://doi.org/10.1137/17M1147615
http://arxiv.org/abs/https://doi.org/10.1137/17M1147615
https://doi.org/10.1007/978-3-030-43736-7_1
https://doi.org/10.1007/978-3-030-43736-7_1
https://doi.org/10.1111/j.1467-8659.2012.03171.x
https://doi.org/10.1145/2601097.2601116
https://doi.org/10.1145/2601097.2601116
https://doi.org/10.1561/2200000016
https://doi.org/10.1561/2200000016
https://doi.org/10.1145/3197517.3201387
https://doi.org/10.1145/1391989.1391995
https://doi.org/10.1111/cgf.13243
https://doi.org/10.1109/TVCG.2015.2459687
https://doi.org/10.1109/TVCG.2015.2459687
https://doi.org/10.1145/3130800.3130895
https://doi.org/10.1145/3359566.3360073
https://doi.org/10.1145/2897824.2925920
https://doi.org/10.1145/3072959.2990496
http://dl.acm.org/citation.cfm?id=2982818.2982822
http://dl.acm.org/citation.cfm?id=2982818.2982822
https://doi.org/10.1109/TVCG.2017.2730875
https://doi.org/10.1145/3197517.3201290
https://doi.org/10.1145/3197517.3201290
https://doi.org/10.1145/2983621
https://doi.org/10.1145/3072959.3073618
https://doi.org/10.1145/3072959.3073618
https://doi.org/10.1111/cgf.13837
https://doi.org/10.1111/cgf.13837
https://doi.org/10.1145/3386569.3392435
https://doi.org/10.1145/3386569.3392435
https://doi.org/10.1145/2994258.2994282
https://doi.org/10.1145/3355089.3356491
https://doi.org/10.1145/3197517.3201359

82:14 • Brown and Narain

UV Textured log(𝐸) vs. t(s) log(𝐸-𝐸∗) vs. t(s) Phase Ranges Legend

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

Fig. 11. Symmetric Dirichlet parameterization examples. Columns from left to right: (1) Distortion-mapped UV coordinates; redder means higher distortion.
(2) Original mesh textured with solution (3) log(Energy) vs. Time (s). A dashed line indicates when an intermediate solution has triangle flips. (4) log(Energy
error) vs. Time (s). Error is measured with respect to converged solution. (5) Phase ranges. Horizontal bars span from the end of the early phase to the start of
the late phase of convergence. The x-axis is the log of the time in seconds.

ACM Trans. Graph., Vol. 40, No. 4, Article 82. Publication date: August 2021.

	Abstract
	1 Introduction
	2 Related work
	3 Background
	4 Rotation-aware ADMM
	4.1 The global step with rotation awareness

	5 Dynamic Reweighting
	5.1 Weighting heuristic and Reweighting Step

	6 Applications
	6.1 Quasi-static deformation
	6.2 Parameterization

	7 Results
	7.1 Quasi-static Deformation
	7.2 Parameterization

	8 Conclusion
	8.1 Limitations and future work

	Acknowledgments
	References

